Domain Name System without Root Servers

Matthäus Wander, Christopher Boelmann, Torben Weis

<matthaeus.wander@uni-due.de>

CRiSIS 2017

Dinard, France, September 21, 2017
Domain Name System

- DNS is a critical infrastructure in the Internet
 - Authenticity secured with DNSSEC signatures
 - Hierarchical trust model
Chain of Trust

Parent delegates trust for subnamespace

IP addresses for de.

- de. IN NS a.nic.de.
- de. IN NS f.nic.de.

Secure fingerprint of public key for de

- a.nic.de. IN A 194.0.0.53
- f.nic.de. IN A 81.91.164.5
Chain of Trust

Parent delegates trust for subnamespace

- **root**
 - delegates
- **de**
 - delegates
- **uni-due.de**

Domain owner depends on all parents

- **Root KSK Owner**
- **Root ZSK Owner**
- **de Registry**
- **de Registrar**
- **uni-due.de Domain Operator**
Root Zone Management

TLD Operators

ICANN/PTI

Root KSK

• Long-term key (5–6 years)
 • Private key: stored offline at two U.S. locations
 • Public key: on all DNSSEC resolvers

Verisign

Root ZSK

• Short-term key (3 months)
 • Private key: stored in Verisign production network
 • Public key: authorized by root KSK

Root Server Operators

A

B

fr
tw
...

...
PROPOSAL
DNSSEC without Root

• Skip root and start resolution on top level?
 ◦ Root zone is rather small (2 MByte)
Motivation

• Trust
 ○ Avoid centralization in single point of trust
 ○ Root can tamper with any top-level domain
 ○ Root keys are held within U.S. jurisdiction

• Reliability
 ○ No dependency on root operations

• Client Privacy
 ○ One less level for leaking query names
Use Case

• Redundant domain names in URL
 ◦ Resolve multiple names, majority voting over result
 ◦ No organization can tamper with all three names

http://www.example.br+pl+cz/

Universität Duisburg-Essen
Verteilte Systeme

Matthäus Wander
Challenges

- Resolver needs the root zone contents
- **Challenge**: How to retrieve the TLD delegations?
 - ⇒ **Bootstrapping**
- TLD delegations change occasionally
- **Challenge**: How to update the TLD delegations?
 - ⇒ **Priming**: update server IP addresses
 - ⇒ **Trust anchor update**: update public keys
- Solutions exist on root level
 - ⇒ Use similar mechanisms for top-level domains
Bootstrapping

- **Objective**: retrieve IP addresses and keys of TLD
- **Automatically** over existing trusted path
- **Manually** from TLD operators

Ships DNS software and updates ⇔ Also ship TLD delegations

- Manual, e.g. website, email, VoIP call, instant message
- Cumbersome, but with human verification
- Useful for vendors and high-profile resolver operators
Primeng: Update Server Addresses

- Query TLD for set of server IP addresses
 - Timeout? ⇒ query another known server
 - Succeeds if at least one known server responds

- Check all TLDs regularly for new IP addresses

[RF 8109]
Update Trust Anchors

- Query TLD for set of public keys
- Key rollover
 - Introduce new key (signed by well-known key)
 - Later revoke and remove old key
- Check all TLDs regularly for new public keys

[RF 5011]
Commitment and Update Periods

- TLDs must keep one server address and one public key for commitment period Δt
 - e.g. $\Delta t = 1$ year

- Resolvers must update every $\Delta u < \Delta t$
 - If update has been missed: bootstrapping required

- Opt-in: let operators choose
 - TLD: signalize rootless support during bootstrapping
 - Rootless and traditional approach can coexist in the same system
FEASIBILITY STUDY

Will It Blend?
Feasibility Study

- Research questions:
 - How long until a TLD replaces all server addresses?
 - What is the availability with different update Δu?
 - How often do TLDs replace their DNSSEC keys?

- 4–year measurement, every day
 - Download root zone to get TLD server addresses
 - Query TLD server for their public keys

- Data cleaning
 - We consider 1317 TLDs that existed for >1 year
IP Address Replacement

Only 18% replaced all server addresses during our observation.

10% of TLDs replaced all server addresses in < 1 year.
How many TLDs would become unreachable?

- Simulation with different update periods Δu

![Bar chart showing the percentage of TLDs unreachable with different update intervals.]

- 17% of TLDs unreachable with $\Delta u=1$ year
- 11% changed server addresses within one day
Average Key Rollover Interval

28% of TLDs have an average key lifetime of < 1 year
Conclusions

- Without root, there is **one less authority** to trust
 - We still need to trust the TLD operator that we choose
 - Drawback: cannot rely on root for **emergency updates**
- Approach requires long key rollover intervals
 - 4-year study shows suitability for 72% of TLDs
- **Opt–in**: operator chooses whether to go rootless
- Approach **integrates** within existing DNS
 - Shares characteristics of today‘s DNS ecosystem
 - Does not require a fundamentally new architecture