Towards a GPU-Accelerated Domain Name System

Matthäus Wander, Johannes Brüderl

<matthaeus.wander@uni-due.de>

DNS and Internet Naming Research Directions
Marina del Rey, 2016-11-17
Motivation

- Cryptography is expensive for DNSSEC servers
 - NSEC3 iterated hashing
 - Online signing

Domain?

No.

NSEC3 proof:

\[h_1 < h < h_2 \]

\[h = \text{SHA1(SHA1(SHA1(domain)))} \]
Scalability

- How to scale up computing power?
 - Buy another server host
 - Buy a GPU: more computing power for less money

Domain?

No.
NSEC3 proof:
\[h_1 < h < h_2 \]
\[h = \text{SHA1}(\text{SHA1}(\text{SHA1}(\text{domain}))) \]
General-purpose Computing on GPUs

- Process batches of work by parallelization
- Significant speed-up of certain applications
 - e.g. NSEC3 zone enumeration (attacker side)
 - No branch divergence, few global memory accesses

\[h = \text{SHA1(SHA1(SHA1(domain)))} \]
GPU Challenges

- GPU computing incurs **latency** penalty
 - Work batching
 - Move data between device boundaries
 - Lower clock frequency than CPU

- DNS operators are dead serious about latency
 - Trade-off: throughput vs. latency
Server Throughput under NSEC3 Load

DNS server throughput

Queries per second

Iterations

Nvidia GTX 970
AMD R9 390
Intel HD4000
Intel I5-3570k OpenCL
Intel I5-3570k iDNS
Response Latency

- Round-trip time with CPU
 - 0 iterations: < 1 ms per query
 - 150 iterations: beyond server capacity, drops queries

- Round-trip time with GPU and batching
 - 0 iterations: ~13 ms per query
 - 150 iterations: ~15 ms per query
 - 2500 iterations: ~45–50 ms per query
Outlook

- Strategy for GPU offloading?
- Batch sizing?
- Replace iterations with parallelizable hashing?
- Integrated Graphics Processors (IGPs)?
 - Zero-copy memory usage
- NSEC5 on GPU?